Podcast "Modellansatz"

Mathematik und ihre Anwendungen

Bei genauem Hinsehen finden wir die Naturwissenschaft und besonders Mathematik überall in unserem Leben, vom Wasserhahn über die automatischen Temporegelungen an Autobahnen, in der Medizintechnik bis hin zum Mobiltelefon. Woran die Forscher, Absolventen und Lehrenden in Karlsruhe gerade tüfteln, erfahren wir hier aus erster Hand.

Von

Sebastian Ritterbusch

Gudrun Thäter

Teaser

Episoden: Neueste Episoden


Pi ist genau 3

Modellansatz 235

Gudrun spricht mit Petra Schwer und Thomas Kahle. Alle drei sind während des Gesprächs jeweils in ihrem Wohnzimmer und treffen sich auf einer Videoplattform. Deshalb ist es etwas schwieriger, stets nur nacheinander zu sprechen. Petra und Thomas sind an der Otto von Guericke Universität in Magdeburg Professorin bzw. Professor am Institut für Algebra und Geometrie. Der Anlass des Gespräches ist, dass die beiden kürzlich einen Mathepodcast gestartet haben, nämlich Pi ist genau drei. Zur Zeit des Gespräches, im April 2020, waren dort die ersten drei Episoden veröffentlicht mit den Themen Was ist Mathematik, Beweise, Offene Probleme. Im Podcast Pi ist genau drei ist jeweils eine der beiden Personen auf das Thema vorbereitet, die andere wird "überrascht". Als Publikum kann man auf diese Art und Weise die beiden beim Denken und Ideen entwickeln beobachten und sich zum mitdenken anregen lassen. Im Gespräch von Gudrun, Thomas und Petra geht es darum, wie man Mathematik im Podcastformat darstellen kann. Welche Erfahrungen und Wünsche wurden von ihnen gemacht? Inwieweit gehört Mut dazu, sich relativ ungeschützt beim Diskutieren und Ideen Entwickeln zu zeigen und welche Vorteile hat es, diesen Mut aufzubringen? Davon ausgehend reden Sie auch darüber, wie sich Aspekte des Nachfragens und des offenen Denk-Raumes auch in der Lehre realisieren lassen sollten. Weil sie selbst durch andere Podcasts inspiriert worden sind, es selbst zu versuchen, empfehlen sie auch ihre Lieblingspodcasts. Der Titel des Podcasts spielt auf eine Szene der Serie Die Simpsons an. In dieser Episode (S12E16 „Bye Bye Nerdy“, dt: „Lisa knackt den Rowdy-Code“) verschafft sich Professor Frink durch die schockierende Aussage „Pi ist genau drei!“ die Aufmerksamkeit seiner Kollegen. Pi ist genau drei - der irgendwas mit Mathe Podcast aus Magdeburg P. Schwer: Metrische Geometrie, Gespräch mit G. Thäter im Modellansatz Podcast, Folge 102, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2016. Podcast-Empfehlungen von Thomas, Gudrun und Petra: Anekdotisch Evident, Hotel Matze, Was denkst Du denn, Mein Freund der Baum. Thomas hat den Modellansatz kennengelernt über die Folge: G. Thäter, E. Duarte: Algebraic Geometry, Gespräch im Modellansatz Podcast, Folge 171, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2018.

Erschienen: 09.05.2020
Dauer: 1:11:55

Podcast-Webseite: Episode "Pi ist genau 3"


Energie und KI

Modellansatz 234

Gudrun sprach im März 2020 mit Nicole Ludwig. Sie ist eine Kollegin am KIT am Campus Nord und gehört dem Institut für Automation und angewandte Informatik an. Sie war Mitglied des DFG Graduiertenkollegs Energiezustandsdaten Informatikmethoden zur Analyse, Erfassung und Nutzung und ist dabei, ihre Promotion abzuschließen. Im Studium wurde sie von den Themen der Ökonometrie und Statistik eingefangen und von der Freude, aus empirischen Daten verlässliche Ergebnisse ableiten zu können. Sie hat schon in ihrer Bachelorarbeit Maschinelles Lernen für Prognosen benutzt. Deshalb war es sehr spannend für sie, diese Kenntnisse und ihre Freude am Thema in das Graduiertenkolleg zu Energiedaten und Informatik einzubringen. Als Gesellschaft müssen wir in naher Zukunft eine Energieproduktion ohne fossile Brennstoffe erreichen. Es ist jedoch nötig, beim Nutzen von erneuerbaren Energien im Vergleich zu konventioneller Energieerzeugung umzulernen, um einerseits für eine stabile Versorgung von Wirtschaft und Haushalten zu sorgen und andererseits dabei alle Lasten der nötigen Veränderungen fair zu verteilen. Es gibt zwei Möglichkeiten, die Energieproduktion zu optimieren. Zum einen können wir den Produktionszeitplan besser auf die Nachfrage abstimmen. Zum anderen können wir das Verbrauchsverhalten ändern, um eine optimale Versorgungsstrategie zu unterstützen. Traditionell kennt man Prognosen für die Energienachfrage in unterschiedlichen Zeithorizonten und macht diese zur Grundlage für Produktionspläne. Mit einer zunehmenden und sich ändernden Menge an Variablen, die das System beeinflussen, sind perfekte Vorhersagen jedoch sehr unrealistisch und wahrscheinlich nicht der richtige Ansatz für die Zukunft. Man muss sich hierzu nur vor Augen halten, dass die Energieernte sowohl bei Windkraft als auch für Solarstrom stark vom Wetter abhängen. Wenn auch die Wettervorhersage schon sehr viel besser geworden ist, so ist es doch noch nicht möglich, auf ihrer Grundlage hinreichend sichere Vorhersagen für die Energieerzeugung machen zu können. Andererseits gibt es heute auch bessere Möglichkeiten, die Energieabnahme zumindest im Prinzip von außen zu steuern. Das was früher als Nachtstrom die Abnahme von Stromspitzen mit niedrigen Preisen versüßte, kann heute ganz regional und sich täglich anpassend nicht nur in Betrieben sondern sogar im Haushalt steuern, wann beispielsweise die Waschmaschine läuft oder ein Warmwasserspeicher lädt. Bald kann auch die Flotte an E-Fahrzeugen mit ihren Akkumulatoren Energie zum passenden Zeitpunkt abnehmen und auch in Spitzenzeiten wieder abgeben. Die Gesetzgebung ist hier noch nicht so weit wie die technischen Möglichkeiten. Aber man muss sicher auch noch einmal gründlich darüber nachdenken, in welcher Art und Weise man Personen dazu zwingen will, Daten dafür zur Verfügung zu stellen und wie man sie anschließend vor dem Missbrauch dieses Wissens durch Unbefugte schützen kann. (...)

Erschienen: 26.03.2020
Dauer: 39:04

Podcast-Webseite: Episode "Energie und KI"


Fernstudium Maschinenbau

Modellansatz 233

Gudrun sprach Mitte März 2020 mit Franziska Blendin. Das Gespräch fand statt, während beide sich in ihrem jeweiligen Wohnzimmern aufhielten: Gudrun in Karlsruhe und Franziska in Frankfurt (Main). Seit drei Semestern absolviert Franziska ein Online Studium an der Fachhochschule Frankfurt und strebt einen Bachelor in Maschinenbau an. Gudrun wollte gern von ihr erfahren, wieso sie sich für diesen Weg entschieden hat und was ihre Erfahrungen mit dieser besonderen Art des Studiums sind. Franziska hat nicht im Gymnasium Abitur gemacht, sondern ein Fachabitur im Rahmen einer Ausblidung zur Sozialassistentin im Fachbereich Pflege. Während ihrer Tätigkeit als Assistentin einer Rollstuhlfahrerin kam die Idee auf, dass sich Franziska bei dem Rollstuhlhersteller schlau machen könnte, um auch kleine Reparaturen oder Anpassungen an dem Gerät übernehmen zu können. So kam es zu einem Praktikum in dem mittelständischen Unternehmen, das den Rollstuhl herstellt. In der Zeit wuchs ihr die Flex ans Herz und es wurde die Idee geboren, so einen Beruf zu erlernen. Sie hat als Zerspanerin und Schlosserin gearbeitet, wollte allerdings auf jedenfall noch eine Fortbildung machen. Im Prinzip hätten zunächst die Möglichkeiten, einen Meister zu machen oder eine Techniker-Ausbildung neben dem Beruf zu absolvieren nahe gelegen. Aber die Erfahrung zeigte Franziska, dass es als Frau ohnehin nicht so leicht ist, für diese Stellen in die engere Wahl zu kommen und dass diese handwerkstypischen Abschlüsse häufig nicht entsprechend gewürdigt werden. Vom Lernaufwand neben der Erwerbsarbeit sind diese Wege aber ähnlich. So hat sich Franziska für ein online Studium entschieden. Der große Vorteil ist, dass es zeitlich flexibler ist und deshalb leichter mit einer Berufstätigkeit passend gemacht werden kann. Bei 100% Job schafft man aber nicht so viel, wie der ideale Plan bis zum Bachelor vorsieht, sondern eher so 3-4 Fächer (das sind 15-20 Leistungspunkte statt der im Plan avisierten 30 Punkte pro Semester - jeder Leistungspunkt entspricht dabei etwa 30 Zeitstunden Aufwand). Hinzu kommt, dass eigentlich alle, deren Abitur schon eine Weile zurück liegt und die vielleicht ein Schmalspurabi wie Franziska haben, Probleme mit Mathe und anderen Naturwissenschaften haben. Franziska ist z.B. sehr froh, dass sie nun nach drei Semestern endlich Mathe 1 bestanden hat (Mathe 2 fiel ihr dann nicht so schwer). Für jedes Modul sind drei Anwesenheitszeiten pro Semester geplant, die ausnahmsweise auch als Webkonferenz durchgeführt werden, in der die Studierenden Fragen stellen können. Den Stoff muss man sich vorher selbst z.B. mit Hilfe eines Lernprogramms oder dem Skript erarbeiten. Wöchentlich gibt es 60-90 min Vorlesung als Webkonferenz - das ist aber mehr eine Zusammenfassung des Stoffs und reicht nicht, um den Stoff zu verstehen. Außerdem müssen noch zwei Hausarbeiten eingesendet werden, um zur Prüfung zugelassen zu werden. (...)

Erschienen: 19.03.2020
Dauer: 1:02:30

Podcast-Webseite: Episode "Fernstudium Maschinenbau"


Machine Learning - Maschinelles Lernen

Modellansatz 232

Gudrun spricht mit Sebastian Lerch vom Institut für Stochastik in der KIT-Fakultät für Mathematik. Vor einiger Zeit - Anfang 2015 - hatten die beiden schon darüber gesprochen, wie extreme Wetterereignisse stochastisch modelliert werden können. Diesmal geht es um eine Lehrveranstaltung, die Sebastian extra konzipiert hat, um für Promovierende aller Fachrichtungen am KIT eine Einführung in Machine Learning zu ermöglichen. Der Rahmen hierfür ist die Graduiertenschule MathSEED, die ein Teil des im Oktober 2018 gegründeten KIT-Zentrums MathSEE ist. Es gab schon lange (und vielleicht immer) Angebote am KIT, die insbesondere Ingenieure an moderne Mathematik heranführten, weil sie deren Methoden schon in der Masterphase oder spätestens während der Promotion brauchten, aber nicht durch die klassischen Inhalten der Höheren Mathematik abgedeckt werden. All das wird nun gebündelt und ergänzt unter dem Dach von MathSEED. Außerdem funktioniert das nun in beide Richtungen: Mathematiker:innen, werden ebenso zu einführenden Angeboten der anderen beteiligten Fakultäten eingeladen. Das Thema Maschinelles Lernen und Künstliche Intelligenz war ganz oben auf der Wunschliste für neu zu schaffende Angebote. Im Februar 2020 hat Sebastian diese Vorlesung erstmalig konzipiert und gehalten - die Übungen wurden von Eva-Maria Walz betreut. Die Veranstaltung wird im Herbst 2020 wieder angeboten. Es ist nicht ganz einfach, die unterschiedlichen Begriffe, die für Künstliche Intelligenz (kurz: KI) benutzt werden gegeneinander abzutrennen, zumal die Sprechweisen in unterschiedlichen Kontexten unterschiedlich sind. Hinzu tritt, dass mit der Verfügbarkeit großer Datenmengen und der häufigen Nutzung von KI und Big Data gemeinsam auch hier vieles vermischt wird. Sebastian defininiert Maschinelles Lernen als echte Teilmenge von KI und denkt dabei auch daran, dass z.B. symbolisches Rechnen KI ist. Ebenso geben schon lange sogenannte Expertensysteme Hilfestellung für Entscheidungen. Hier geben Regeln ein Programm vor, das Daten-Input zu einem Output verwandelt. Heute denken wir bei KI eher daran, dass z.B. der Computer lernt wie ein Bild eines Autos aussieht, ohne dass dafür klare Regeln vorgegeben werden. Dies ist eher vergleichbar damit, wie Kinder lernen. Die modernste Variante ist sogenanntes Deep Learning auf der Basis von Neuronalen Netzen. Die Abgrenzung zu statistischen Verfahren ist mitunter nicht so klar. Das Neuronale Netz wird dabei eine Black Box, was wissenschaftlich arbeitende Menschen nicht ganz befriedigt. Aber mit ihrer Hilfe werden komplexere Probleme lösbar. Forschung muss versuchen, die Entscheidungen der Black Box nachvollziehbar zu machen und entscheiden, wann die Qualität ausreicht. Dazu muss man sich überlegen: Wie misst man Fehler? In der Bildverarbeitung kann es genügen, z.B. falsch erkannte Autos zu zählen. In der Wettervorhersage lässt sich im Nachhinein feststellen, welche Fehler in der Vorhersage gemacht wurden. (...)

Erschienen: 05.03.2020
Dauer: 41:23

Podcast-Webseite: Episode "Machine Learning - Maschinelles Lernen"


Photoacoustic Tomography

Modellansatz 231

In March 2018 Gudrun had a day available in London when travelling back from the FENICS workshop in Oxford. She contacted a few people working in mathematics at the University College London (ULC) and asked for their time in order to talk about their research. In the end she brought back three episodes for the podcast. This is the second of these conversations. Gudrun talks to Marta Betcke. Marta is associate professor at the UCL Department of Computer Science, member of Centre for Inverse Problems and Centre for Medical Image Computing. She has been in London since 2009. Before that she was a postdoc in the Department of Mathematics at the University of Manchester working on novel X-ray CT scanners for airport baggage screening. This was her entrance into Photoacoustic tomography (PAT), the topic Gudrun and Marta talk about at length in the episode. PAT is a way to see inside objects without destroying them. It makes images of body interiors. There the contrast is due to optical absorption, while the information is carried to the surface of the tissue by ultrasound. This is like measuring the sound of thunder after lightning. Measurements together with mathematics provide ideas about the inside. The technique combines the best of light and sound since good contrast from optical part - though with low resolution - while ultrasound has good resolution but poor contrast (since not enough absorption is going on). In PAT, the measurements are recorded at the surface of the tissue by an array of ultrasound sensors. Each of that only detects the field over a small volume of space, and the measurement continues only for a finite time. In order to form a PAT image, it is necessary to solve an inverse initial value problem by inferring an initial acoustic pressure distribution from measured acoustic time series. In many practical imaging scenarios it is not possible to obtain the full data, or the data may be sub-sampled for faster data acquisition. Then numerical models of wave propagation can be used within the variational image reconstruction framework to find a regularized least-squares solution of an optimization problem. Assuming homogeneous acoustic properties and the absence of acoustic absorption the measured time series can be related to the initial pressure distribution via the spherical mean Radon transform. Integral geometry can be used to derive direct, explicit inversion formulae for certain sensor geometries, such as e.g. spherical arrays. At the moment PAT is predominantly used in preclinical setting, to image tomours and vasculature in small animals. Breast imaging, endoscopic fetus imaging as well as monitoring of perfusion and drug metabolism are subject of intensive ongoing research. The forward problem is related to the absorption of the light and modeled by the wave equation assuming instanteneous absorption and the resulting thearmal expansion. In our case, an optical ultrasound sensor records acoustic waves over time, (...)

Erschienen: 27.02.2020
Dauer: 45:28

Podcast-Webseite: Episode "Photoacoustic Tomography"


Waveguides

Modellansatz 230

This is the third of three conversation recorded during the Conference on mathematics of wave phenomena 23-27 July 2018 in Karlsruhe. Gudrun is in conversation with Anne-Sophie Bonnet-BenDhia from ENSTA in Paris about transmission properties in perturbed waveguides. The spectral theory is essential to study wave phenomena. For instance, everybody has experimented with resonating frequencies in a bathtube filled with water. These resonant eigenfrequencies are eigenvalues of some operator which models the flow behaviour of the water. Eigenvalue problems are better known for matrices. For wave problems, we have to study eigenvalue problems in infinite dimension. Like the eigenvalues for a finite dimensional matrix the Spectral theory gives access to intrinisic properties of the operator and the corresponding wave phenomena. Anne-Sophie is interested in waveguides. For example, optical fibres can guide optical waves while wind instruments are guides for acoustic waves. Electromagnetic waveguides also have important applications. A practical objective is to optimize the transmission in a waveguide, even if there are some perturbations inside. It is known that for certain frequencies, there is no reflection by the perturbations but it is not apriori clear how to find these frequencies. Anne-Sophie uses complex analysis for that. The idea is to complexify the (originally real) coordinates by analytic extension. It is a classic idea for resonances that she adapts to the problem of transmission. This mathematical method of complex scaling is linked to the method of perfectly matched layers in numerics. It is used to solve problems set in unbounded domains on a computer by finite elements. Thanks to the complex scaling, she can solve a problem in a bounded domain, which reproduces the same behaviour as in the infinite domain. Finally, Anne-Sophie is able to get numerically a complex spectrum of frequencies, related to the quality of the transmission in a perturbed waveguide. The imaginary part of the complex quantity gives an indication of the quality of the transmission in the waveguide. The closer to the real axis the better the transmission.

Erschienen: 06.02.2020
Dauer: 31:31

Podcast-Webseite: Episode "Waveguides"


Gruppenentscheidungen

Modellansatz 229

Gudrun sprach im Januar 2020 mit drei Studenten ihrer Vorlesung Mathematical Modelling and Simulation: Samory Gassama, Lennart Harms und David Schneiderhan. Sie hatten in ihrem Projekt Gruppenentscheidungen modelliert. In dem Gespräch geht es darum, wie man hierfür mathematische Modelle findet, ob man Wahlsysteme fair gestalten kann und was sie aus den von ihnen gewählten Beispielen gelernt haben. Wie lassen sich Entscheidungen von Wählergruppen fair in demokratische Willensbildung einbringen? Mit diesem Thema beschäftigt sich u.a. auch die Volkswirtschaftslehre. Die dafür benutzten Modelle sollten einige Eigenschaften haben. Ein grundlegendes Kriterium wäre beispielsweise: Wenn alle der gleichen Meinung sind, sollte diese Meinung auch immer die Gruppenentscheidung sein. Ein weiteres Kriterum könnte verlangen, dass das Ergebnis Pareto-optimal ist, es also kein anderes Ergebnis gibt, mit dem jedes Gruppenmitglied zufriedener wäre. Um die Präferenz der Gruppe auszudrücken, führen die Studenten die Wohlfahrtsfunktion ein. Das ist eine Abbildung, welche als Input die Präferenzen der einzelnen Wähler verknüpft. Das Wahlverfahren wird sozusagen in dieser Abbildung modelliert. Man wünscht sich Anonymität: Jede Stimme sollte gleich gewertet werden. Neutralität: Wenn die Relationen im Input invertiert werden, bewirkt dies das Selbe beim Output. Monotonie: Falls eine Relation aus dem Input, welche nicht den Präferenzen des Outputs entspricht, sich zur Präferenzrelation des Outputs ändert, bleibt dieser gleich. Verfahren wie Rangaddition und Condorcet-Methode sind klassisch und erfüllen leider nicht alle diese Bedingungen. Die Studenten fügen eine weitere Entscheidungsebene im Modell hinzu. Man nennt dies geschachtelte Wahl. Als Beispiele dienen die US Präsidentschaftswahl 2016 und der Eurovision Song Contest 2019. Bei den Präsidentschaftswahlen in den VereinigtenStaaten von Amerika, wird der Präsident von den Wahlleuten der Bundesstaaten für eine Amtszeit bestimmt. Jeder Bundesstaat hat unterschiedlich viele Wahlleute. Die Wahlberechtigten legen unmittelbar nur die Wahlleute fest. Deshalb ist das Modell der US Präsidentschaftswahlen ist ein geschachteltes Modell. Im ersten Schritt, werden in allen 52 Staaten die Wahlen, mit den US Bürgern des jeweiligen Staates als Wähler, mithilfe des Condorcet Modells durchgeführt. Im zweiten Schritt bilden eben jene 52 Staaten die neue Wählermenge, welche dann über eine gewichtete Rangaddition den endgültigen Präsidenten bestimmt. Die Studenten haben im Projekt zwei Datensätze verwendet, um die Präsidentschaftswahlen 2016 in den USA zwischen Donald Trump und Hillary Clinton zu simulieren. Sie geben die Anzahl der Stimmen für Donald Trump und Hillary Clinton in den verschiedenen Wahlbezirken der USA an. Um die Simulation durchzuführen, wurde Google Colab verwendet. Die benutzte Programmiersprache ist Python. Die Wahl wurde folgendermaßen simuliert: (...)

Erschienen: 31.01.2020
Dauer: 34:58

Podcast-Webseite: Episode "Gruppenentscheidungen"


Algorithmisches Differenzieren

Modellansatz 228

Gudruns Arbeitsgruppe begrüßte im Januar 2020 Andrea Walther als Gast. Sie ist Expertin für das algorithmische Differenzieren (AD) und ihre Arbeitsgruppe ist verantwortlich für das ADOL-C Programmpaket zum algorithmischen Differenzieren. Zusammen mit Andreas Griewank hat sie 2008 das Standardbuch zu AD veröffentlicht. Im Abitur und im mathematischen Grundstudium lernt jede und jeder Anwendungen kennen, wo Ableitungen von Funktionen gebraucht werden. Insbesondere beim Auffinden von Minima und Maxima von Funktionen ist es sehr praktisch, dies als Nullstellen der Ableitung zu finden. Bei der Modellierung komplexer Zusammenhänge mit Hilfe von partiellen Differentialgleichungen ist es möglich, diese Idee in ein abstrakteres Setting zu Übertragen. Eine sogenannte Kostenfunktion misst, wie gut Lösungen von partiellen Differentialgleichungen einer vorgegebenen Bedingung genügen. Man kann sich beispielsweise einen Backofen vorstellen, der aufgeheizt wird, indem am oberen und unteren Rand eine Heizspirale Wärme in den Ofen überträgt. Für den Braten wünscht man sich eine bestimmte Endtemperaturverteilung. Die Wärmeverteilung lässt sich mit Hilfe der Wärmeleitungsgleichung berechnen. In der Kostenfunktion wird dann neben der gewünschten Temperatur auch noch Energieeffizienz gemessen und die Abweichung von der Endtemperatur wird zusammen mit der benötigten Energie minimiert. Auch hierzu werden Ableitungen berechnet, deren Nullstellen helfen, diese Kosten zu minimeren. Man spricht hier von optimaler Steuerung. Eine Möglichkeit, die abstrakte Ableitung auszudrücken, ist das Lösen eines sogenannten adjungierten partiellen Differenzialgleichungsproblems. Aber hier wird es sehr schwierig, immer schnell und fehlerfrei Ableitungen von sehr komplexen und verschachtelten Funktionen zu berechnen, zumal sie für jedes Problem immer wieder neu und anders aussehen. Außerdem braucht man in der numerischen Auswertung des Algorithmus oft nur Werte dieser Ableitung an bestimmten Stellen. Deshalb ist die effiziente Berechnung von Funktionswerten der Ableitung ein unverzichtbarer Baustein in zahlreichen Anwendungen, die von Methoden zur Lösung nichtlinearer Gleichungen bis hin zu ausgefeilten Simulationen in der Optimierung und optimalen Kontrolle reichen. Am liebsten sollte dies der Computer fehlerfrei oder doch mit sehr kleinen Fehlern übernehmen können. Auch für das Newtonverfahren braucht man die Ableitung der Funktion. Es ist das Standardverfahren zur Lösung nichtlinearer Gleichungen und Gleichungssysteme. Das algorithmische Differenzieren (AD) liefert genaue Werte für jede Funktion, die in einer höheren Programmiersprache gegeben ist, und zwar mit einer zeitlichen und räumlichen Komplexität, die durch die Komplexität der Auswertung der Funktion beschränkt ist. Der Kerngedanke der AD ist die systematische Anwendung der Kettenregel der Analysis. Zu diesem Zweck wird die Berechnung (...)

Erschienen: 23.01.2020
Dauer: 1:08:58

Podcast-Webseite: Episode "Algorithmisches Differenzieren"


Pattern Formation

Modellansatz 227

This is the second of three conversation recorded Conference on mathematics of wave phenomena 23-27 July 2018 in Karlsruhe. Gudrun is in conversation with Mariana Haragus about Benard-Rayleigh problems. On the one hand this is a much studied model problem in Partial Differential Equations. There it has connections to different fields of research due to the different ways to derive and read the stability properties and to work with nonlinearity. On the other hand it is a model for various applications where we observe an interplay between boyancy and gravity and for pattern formation in general. An everyday application is the following: If one puts a pan with a layer of oil on the hot oven (in order to heat it up) one observes different flow patterns over time. In the beginning it is easy to see that the oil is at rest and not moving at all. But if one waits long enough the still layer breaks up into small cells which makes it more difficult to see the bottom clearly. This is due to the fact that the oil starts to move in circular patterns in these cells. For the problem this means that the system has more than one solutions and depending on physical parameters one solution is stable (and observed in real life) while the others are unstable. In our example the temperature difference between bottom and top of the oil gets bigger as the pan is heating up. For a while the viscosity and the weight of the oil keep it still. But if the temperature difference is too big it is easier to redistribute the different temperature levels with the help of convection of the oil. The question for engineers as well as mathematicians is to find the point where these convection cells evolve in theory in order to keep processes on either side of this switch. In theory (not for real oil because it would start to burn) for even bigger temperature differences the original cells would break up into even smaller cells to make the exchange of energy faster. In 1903 Benard did experiments similar to the one described in the conversation which fascinated a lot of his colleagues at the time. The equations where derived a bit later and already in 1916 Lord Rayleigh found the 'switch', which nowadays is called the critical Rayleigh number. Its size depends on the thickness of the configuration, the viscositiy of the fluid, the gravity force and the temperature difference. Only in the 1980th it became clear that Benards' experiments and Rayleigh's analysis did not really cover the same problem since in the experiment the upper boundary is a free boundary to the surrounding air while Rayleigh considered fixed boundaries. And this changes the size of the critical Rayleigh number. For each person doing experiments it is also an observation that the shape of the container with small perturbations in the ideal shape changes the convection patterns. Maria does study the dynamics of nonlinear waves and patterns. This means she is interested in understanding processes which (...)

Erschienen: 16.01.2020
Dauer: 30:07

Podcast-Webseite: Episode "Pattern Formation"


Linear Sampling

Modellansatz 226

This is the first of three conversation recorded Conference on mathematics of wave phenomena 23-27 July 2018 in Karlsruhe. Gudrun talked to Fioralba Cakoni about the Linear Sampling Method and Scattering. The linear sampling method is a method to reconstruct the shape of an obstacle without a priori knowledge of either the physical properties or the number of disconnected components of the scatterer. The principal problem is to detect objects inside an object without seeing it with our eyes. So we send waves of a certain frequency range into an object and then measure the response on the surface of the body. The waves can be absorbed, reflected and scattered inside the body. From this answer we would like to detect if there is something like a tumor inside the body and if yes where. Or to be more precise what is the shape of the tumor. Since the problem is non-linear and ill posed this is a difficult question and needs severyl mathematical steps on the analytical as well as the numerical side. In 1996 Colton and Kirsch (reference below) proposed a new method for the obstacle reconstruction problem in inverse scattering which is today known as the linear sampling method. It is a method to solve the above stated problem, which scientists call an inverse scattering problem. The method of linear sampling combines the answers to lots of frequencies but stays linear. So the problem in itself is not approximated but the interpretation of the response is. The central idea is to invert a bounded operator which is constructed with the help of the integral over the boundary of the body. Fioralba got her Diploma (honor’s program) and her Master's in Mathematics at the University of Tirana. For her Ph.D. she worked with George Dassios from the University of Patras but stayed at the University of Tirana. After that she worked with Wolfgang Wendland at the University of Stuttgart as Alexander von Humboldt Research Fellow. During her second year in Stuttgart she got a position at the University of Delaware in Newark. Since 2015 she has been Professor at Rutgers University. She works at the Campus in Piscataway near New Brunswick (New Jersey).

Erschienen: 09.01.2020
Dauer: 47:40

Podcast-Webseite: Episode "Linear Sampling"


Podcast "Modellansatz"
Merken
QR-Code