Podcast "Modellansatz"

Mathematik und ihre Anwendungen

Bei genauem Hinsehen finden wir die Naturwissenschaft und besonders Mathematik überall in unserem Leben, vom Wasserhahn über die automatischen Temporegelungen an Autobahnen, in der Medizintechnik bis hin zum Mobiltelefon. Woran die Forscher, Absolventen und Lehrenden in Karlsruhe gerade tüfteln, erfahren wir hier aus erster Hand.

Von

Sebastian Ritterbusch

Gudrun Thäter

Teaser

Episoden: Neueste Episoden

FPGA Seitenkanäle

Modellansatz 177

Vom 10. - 13. Mai 2018 fand im ZKM und in der Hochschule für Gestaltung (HfG) die GPN18 statt. Dort traf sich Sebastian mit Dennis Gnad, um mit ihm über Seitenangriffe auf Field Programmable Gate Arrays (FPGA) zu sprechen. FPGAs sind veränderliche Computerchips, die hervorragend bei der Entwicklung von logischen Schaltkreisen oder spezieller Glue Logic helfen, und kommen inzwischen auch als Rechenbeschleuniger zum Einsatz. Man kann FPGAs als Vorstufe zu Application-Specific Integrated Circuits (ASIC) sehen, auf denen Strukturen noch viel feiner, für höhere Taktraten und sparsamer abgebildet werden können, das Design aber um Größenordnungen teurer ist. Und während einem ASIC die Funktion ab Werk einbelichtet ist, können FPGAs nahezu beliebig oft zur Laufzeit umprogrammiert werden. Wie im Podcast zu digitalen Währungen erwähnt, spielen Graphical Process Units (GPUs), FPGAs und ASICs eine große Rolle bei Kryptowährungen. Hier ist ein einzelner FPGA-Chip beim so genannten Mining meisst nicht schneller als eine GPU, verbrauchen jedoch im Vergleich deutlich weniger Strom. Spezialisierte ASICs hingegen übersteigen in Effizienz und Geschwindigkeit alle anderen Lösungen. FPGAs finden sich aktuell in vielen Consumer-Produkten, wie dem Apple iPhone 7, im Samsung Galaxy S5, Smart-TVs und selbst auch der Pebble Smartwatch. Ihren besonderen Vorteil spielen FPGAs bei der Verarbeitung von großen Datenmengen wie Videodaten aus, da sie in der Parallelisierung nur durch den verfügbaren Platz beschränkt sind. Die Beschreibung von FPGAs und ASICs, oder deren Programmierung, erfolgt eher strukturell in Hardwarebeschreibungssprachen wie Verilog oder VHDL. Diese Beschreibungen unterscheiden sich sehr von imperativen Programmiersprachen, wie sie oft für CPUs oder GPUs verwendet werden. Es werden in logischen oder kombinatorischen Blöcken Daten verarbeitet, die dann in Taktschritten von und in Datenregister übertragen werden. Die erreichbare Taktfrequenz hängt von der Komplexität der kombinatorischen Blöcke ab. Ein Beispiel für logische Blöcke können Soft-Cores sein, wo zukünftige oder nicht mehr erhältliche CPU-Designs in FPGAs zur Evaluation oder Rekonstruktion abgebildet werden. Eine Variante ist die Entwicklung in OpenCL, wo verschiedene Architekturen wie GPUs, CPUs und FPGA unterstützt werden. Für die effiziente Umsetzung ist dafür weiterhin großes Hardwarewissen erforderlich, und man kann nicht erwarten, dass Code für FPGAs ebenso auf GPU, oder umgekehrt CPU-Code in FPGAs darstellbar ist. Das Interesse von Dennis Gnad liegt bei den FPGAs darin, deren Daten, Logik oder Inhalte durch Seitenkanalangriffe in von den Entwicklern unvorhergesehener Art und Weise auszulesen. Ein Beispiel ist das Erkennen von Fernsehsendungen aus dem Stromverbrauch des Fernsehgeräts wie es auch schon im Podcast zu Smart Metern beschrieben wurde. Ebenso wurden schon Kryptoschlüssel aus Geräuschen einer CPU bestimmt. Mit Soundkarten kann man Funkuhren verstellen (...)

Erschienen: 16.08.2018
Dauer: 54:10

Podcast-Webseite: Episode "FPGA Seitenkanäle"


Mechanical Engineering

Modellansatz 176

In the last two semesters Gudrun has taught the courses Advanced Mathematics I and II for Mechanical Engineers. This is a mandatory lecture for the International mechanical engineering students at KIT in their first year of the Bachelor program. This program is organized by the Carl Benz School of Engineering. Beside the study courses, the school also provides common housing for students coming to Karlsruhe from all over the world. The general structure and topics of the first year in Advanced Mathematics were already discussed in our episode 146 Advanced Mathematics with Jonathan Rollin. This time Gudrun invited two students from her course to have the student's perspective, talking about mathematics, life, and everything. Yueyang Cai grew up mostly in China. In 2015, the work of her mother led Yueyang to Stuttgart. While looking for opportunities to study a technical subject in Germany the English speaking program in Karlsruhe somehow suggested itself. After one year she is sure to have made the right decision. The second student in the conversation is Siddhant Dhanrajani. His family is Indian but lives in Dubai. For that he got his education in Dubai in an Indian community follwowing the Indian educational system (CBSE). He had never heard of the Engineering program in Karlsruhe but found it through thourough research. He is really amazed at how such an excellent study program and such an excellent university as the KIT are not better known for their value in the world. In the conversation both students talk about their education in their respective countries, their hopes and plans for the study course mechanical engineering and their experiences in the first year here in Karlsruhe. It is very interesting to see how the different ways to teach mathematics, namely, either as a toolbox full of recipes (which the students get well-trained in) or secondly as a way to approach problems in a context of a mathematical education contribute to an experience to be well-equipped to work creative and with a lot of potential as an engineer. Though the students finished only the first year in a three years course they already work towards applications and necessary certificates for their possible master program after finishing the course in Karlsruhe.

Erschienen: 02.08.2018
Dauer: 53:29

Podcast-Webseite: Episode "Mechanical Engineering"


Flugunfälle

Modellansatz 175

Vom 10. - 13. Mai 2018 fand im ZKM und in der Hochschule für Gestaltung (HfG) die GPN18 statt. Dort traf Sebastian auf Bernd Sieker und sprach mit ihm um Unfälle mit Autopiloten mit Flugzeugen und Automobilen. Der Flugreiseverkehr ist inzwischen sehr sicher, es verbleibt aber ein Restrisiko, das man an den sehr seltenen Flugunfällen erkennen kann. Bernd untersucht nun die wenigen Abstürze großer Airliner, die es noch gab, und fragt sich, wie es zu diesen Katastrophen kommen konnte. Beispiele für Unfallursachen können beispielsweise Ausfälle scheinbar weniger relevanter Systeme sein, wo von der Crew Entscheidungen getroffen werden, die sie für sinnvoll halten, sich aber später als problematisch herausstellen. Technische Schäden, die unmittelbar zum Absturz führen, sind inzwischen sehr selten. Und selbst scheinbare kritische Ausfälle wie Triebwerksausfälle werden geübt und es gibt Prozeduren, wie man in diesen Fällen das Flugzeug möglichst sicher landen können sollte. Im Segelflug gehört eine Außenlandung auf freiem Feld zum Normalbetrieb, wobei man natürlich für am Boden etwaig entstandenen Schaden aufkommen muss, falls der Landwirt darauf besteht. Eine entsprechende nicht genehmigte Sicherheits- oder Notlandung führt bei Motorflugzeugen zur Auskunfts- oder Meldepflicht mit entsprechenden Auflagen zum Abtransport oder Erlaubnis zum Wiederstart. Bei der Untersuchung von Unglücksfällen geht der erste Blick auf offizielle Berichte oder Untersuchungen. So auch beim Air-France Flug 447 von 2009, wo ein Airbus A330-203 mitten über dem Atlantik plötzlich verschwand. Erste Indizien auf das Unglück wurden durch ACARS-System über Satellit empfangen, unter anderem über den Ausfall von Staurohren, mit denen die Geschwindigkeit des Flugzeugs gemessen wird. Das ist ein dramatischer Ausfall an Information, mit dem die Piloten aber umgehen können müssten und der eigentlich nicht zu einem Absturz führen sollte, denn die Geschwindigkeit ist noch mittels anderer Sensoren erkennbar. Erste gefundene Wrackteile deuteten darauf hin, dass das Flugzeug fast senkrecht in horizontaler Lage auf das Wasser aufgeschlagen sein musste. Dies führte auf die Vermutung, dass das Flugzeug überzogen wurde, bis es zum Strömungsabriss kam, und es daraufhin einfach herunterfiel. Nach Bergung des Flugschreibers bestätigte sich der vermutete Ablauf. Er wurde durch einen überraschend kurzen Zeitraum von wenigen Minuten zwischen Fehlermeldung und Absturz aus Reiseflughöhe belegt. Die Piloten müssen in der widersprüchlichen Situation gewesen sein, dass ihnen der Sink"flug" angezeigt wurde, während die Nase des Flugzeugs nach oben zeigte, was laut Training normalerweise in diesem Flugzustand nicht möglich ist. Bei dem eingesetzten Fly-by-wire System wäre eigentlich auch kein Strömungsabriss möglich gewesen. Nach Ausfall der Staurohre führte nun die Verkettung zwischen unvorhersehbarem Flugzeugzustand und der dramatischen Fehlinterpretation durch die Piloten zum Absturz. (...)

Erschienen: 26.07.2018
Dauer: 1:22:29

Podcast-Webseite: Episode "Flugunfälle"


CAMMP Week

Modellansatz 174

In dieser Folge unterhält sich Gudrun gleich mit vier Personen. Im Gespräch geht es um ein ganz besonderes Angebot für Schülerinnen und Schüler: die CAMMP-week. Die Abkürzung CAMMP steht hier für "Computational and Mathematical Modeling Program" (deutsch: "Computergestütztes Mathematisches Modellierungsprogramm"). Das Programm wurde in der Arbeitsgruppe von Martin Frank während seiner Tätigkeit an der RWTH in Aachen entwickelt. Mit seinem Wechsel ans KIT in Karlsruhe gibt es nun seit Januar 2018 auch ein Standbein am KIT. Mit Kirsten Wohak hatte Gudrun schon über das Konzept, die Idee und konkrete Beispiele für CAMMP gesprochen. Dabei entstand der Wunsch, unbedingt auch Schülerinnen und Schüler zu Wort kommen zu lassen, die an einer CAMMP-Veranstaltung teilgenommen haben. Elly Bastian und Christian Beitzinger haben vom 24.-29. Juni 2018 an der diesjährigen CAMMP week in der Jugendherberge in Voeren (Belgien) teilgenommen und hatten Lust, im Podcast über ihre Erfahrungen zu berichten. Elly ist derzeit noch Schülerin der 10. Klasse am Goethe-Gymnasium in Gaggenau und Christian ist in der K1 im Tulla-Gymnasium in Rastatt. Zwei Programmgestalterinnen waren ebenfalls mit in der Podcast-Gesprächsrunde, nämlich Kirsten Wohak und Maren Hattebuhr. Sie gehören am KIT zur Arbeitsgruppe von Martin Frank Computational Science and Mathematical Methods. Diese Gruppe schlägt eine Brücke zwischen dem Steinbuch Center for Computing und der KIT-Fakultät für Mathematik. Das Angebot der CAMMP week richtet sich an Schüler und Schülerinnen der Oberstufe, die an Mathematik interessiert sind, an Mathematiklehrpersonen sowie Personen im Referendariat oder Lehramtsstudium und findet jährlich in der Jugendherberge in Voeren in Belgien statt. In Karlsruhe wird zusätzlich noch eine zweite Modellierungswoche in Zusammenarbeit mit dem MINT-EC angeboten, an welcher Schülerinnen und Schüler von Schulen, die Teil des MINT-Schulnetzwerks sind, teilnehmen können. In beiden Wochen werden die Teilnehmenden in Gruppen aufgeteilt, die jeweils aus sechs Schülerinnen und Schülern und zwei (angehenden) Lehrkräften bestehen. Bei den zu lösenden Problemen handelt es sich um reale Fragestellungen aus der Forschung von Firmen oder Universitätsinstituten. Jede Gruppe erhält eine individuelle Aufgabenstellung, an der sie innerhalb der fünf Tage forscht. Dabei wird sie auch wissenschaftlich betreut. Die Schülerteams präsentieren ihre Ergebnisse den Firmen am Ende der Woche im Rahmen einer repräsentativen Abschlussveranstaltung. Hier sind auch die Familien und die Schulen dabei. Welche Wege führen junge Menschen nun in die CAMMP week? Elly hatte Anfang 2018 die Arbeit der Gruppe um Martin Frank im Rahmen ihres BOGY-Praktikums kennen gelernt und dabei Lust bekommen, noch mehr praktische Mathematik zu machen. Obwohl sie keine andere Person kannte, die auch nach Belgien fahren würde, war ihre Lust so groß, dass sie sich auf das Abenteuer einlassen wollte. (...)

Erschienen: 19.07.2018
Dauer: 39:45

Podcast-Webseite: Episode "CAMMP Week"


Dynamical Sampling

Modellansatz 173

Gudrun met the USA-based mathematician Roza Aceska from Macedonia in Turin at the Conference MicroLocal and Time-Frequency Analysis 2018. The topic of the recorded conversation is dynamical sampling. The situation which Roza and other mathematician study is: There is a process which develops over time which in principle is well understood. In mathematical terms this means we know the equation which governs our model of the process or in other words we know the family of evolution operators. Often this is a partial differential equation which accounts for changes in time and in 1, 2 or 3 spatial variables. This means, if we know the initial situation (i.e. the initial conditions in mathematical terms), we can numerically calculate good approximations for the instances the process will have at all places and at all times in the future. But in general when observing a process life is not that well sorted. Instead we might know the principal equation but only through (maybe only a few) measurements we can find information about the initial condition or material constants for the process. This leads to two questions: How many measurements are necessary in order to obtain the full information (i.e. to have exact knowledge)? Are there possibilities to choose the time and the spatial situation of a measurement so clever as to gain as much as possible new information from any measurement? These are mathematical questions which are answered through studying the equations. The science of sampling started in the 1940s with Claude Shannon who found fundamental limits of signal processing. He developed a precise framework - the so-called information theory. Sampling and reconstruction theory is important because it serves as a bridge between the modern digital world and the analog world of continuous functions. It is surprising to see how many applications rely on taking samples in order to understand processes. A few examples in our everyday life are: Audio signal processing (electrical signals representing sound of speech or music), image processing, and wireless communication. But also seismology or genomics can only develop models by taking very intelligent sample measurements, or, in other words, by making the most scientific sense out of available measurements. The new development in dynamical sampling is, that in following a process over time it might by possible to find good options to gain valuable information about the process at different time instances, as well as different spatial locations. In practice, increasing the number of spatially used sensors is more expensive (or even impossible) than increasing the temporal sampling density. These issues are overcome by a spatio-temporal sampling framework in evolution processes. The idea is to use a reduced number of sensors with each being activated more frequently. Roza refers to a paper by Enrique Zuazua (...)

Erschienen: 12.07.2018
Dauer: 33:23

Podcast-Webseite: Episode "Dynamical Sampling"


Sternenschwerpunkt

Modellansatz 172

Am Rande des Treffens des German Chapters of European Women in Mathematics sprach Gudrun mit Carla Cederbaum. Das Treffen der Mathematikerinnen fand am 3. und 4. Mai 2018 im Mathematikon in Heidelberg statt. Carla hielt einen der Hauptvorträge und gab einen Einblick in ihre Forschung unter dem Titel "Where is the center of mass of a star -- and what does this have to do with Mathematics?" Die Ideen der Vorlesung dienten als Einstieg in das Gespräch zum Arbeitsgebiet von Carla: Mathematische Relativitätstheorie. Dieses Thema schlägt eine Brücke zwischen Physik und Mathematik. Carla hat sich schon immer sehr für Mathematik und Physik interessiert und sich zunächst für ein Physikstudium entschieden. Später hat die Mathematik sich als attraktiver erwiesen, aber die physikalische Anwendungen liegen ihr weiterhin am Herzen. Nun benutzt sie mathematische Methoden der geometrischen Analysis und Differentialgeometrie gemeinsamen mit ihren grundlegenden Vorstellungen von Physik für ihre Forschung. Im Zentrum des Vortrages stand, welche Schritte es möglich gemacht haben, das klassische Konzept Schwerpunkt auf die Situation zu übertragen, dass sich Objekte so wie Sterne oder Galaxien so schwer sind bzw. sich so schnell bewegen, dass sie den Gesetzmäßigkeiten der Relativitätstheorie unterliegen. Der Schwerpunkt eines physikalischen Systems ist eines der ältesten und grundlegendsten Konzepte der mathematischen Physik und Geometrie. Das Verstehen der Position und Bewegung des Massenschwerpunktes eines Systems ist oft der erste Schritt zum Verständnis der Gesamtdynamik des Systems. Geht man jedoch über die klassische Mechanik hinaus, wird der Begriff immer komplizierter und muss neu definiert werden. Beispielsweise hängt der Schwerpunkt einer Massenverteilung in besonderer Weise vom gewählten Beobachter ab und er muss sich für Objekte wie schwarzes Löcher eignen. Hier kann er nicht als "Ereignis" (Punkt) in der Raumzeit beschrieben werden. Jede Vorstellung vom Massenschwerpunkt muss also notwendigerweise abstrakter sein. In ihrer Doktorarbeit untersuchte Carla sogenannte geometrostatische Systeme, d.h. asymptotisch flache statische Lösungen der Einstein-Gleichungen im Vakuum. Anders ausgedrückt sind das statisch isolierte relativistische Systeme, deren Materie kompakten Träger hat. Ihr Ziel war es, ein tieferes Verständnis ihrer Asymptotik zu erlangen und mehr Einblick in ihre physikalische Interpretation (z.B. Masse und Schwerpunkt) zu gewinnen. Des weiteren war es spannend, inwieweit klassische und solche relativistischen Begriffe ineinander übergehen im Grenzwert kleiner Geschwindigkeiten. Der Vortrag zeigte, worin die Herausforderungen bestehen und zeigte welche Techniken von ihr erfolgreich angewendet worden waren. Als erstes grundlegendes Problem für nicht statische Systeme erweist sich, dass die Beschreibung vom Beobachter abhängen muss. Eine grundlegende Idee ist es, die Lage des Schwerpunktes als Zentrum einer unendlichen Schar von ineinander liegenden Sphären zu beschreiben. Je größer diese Kugeloberflächen werden, (...)

Erschienen: 05.07.2018
Dauer: 54:59

Podcast-Webseite: Episode "Sternenschwerpunkt"


Algebraic Geometry

Modellansatz 171

Gudrun spent an afternoon at the Max Planck Institute for Mathematics in the Sciences (MPI MSI) in Leipzig. There she met the Colombian mathematician Eliana Maria Duarte Gelvez. Eliana is a PostDoc at the MPI MSI in the Research group in Nonlinear Algebra. Its head is Bernd Sturmfels. They started the conversation with the question: What is algebraic geometry? It is a generalisation of what one learns in linear algebra insofar as it studies properties of polynomials such as its roots. But it considers systems of polynomial equations in several variables so-called multivariate polynomials. There are diverse applications in engineering, biology, statistics and topological data analysis. Among them Eliana is mostly interested in questions from computer graphics and statistics. In any animated movie or computer game all objects have to be represented by the computer. Often the surface of the geometric objects is parametrized by polynomials. The image of the parametrization can as well be defined by an equation. For calculating interactions it can be necessary to know what is the corresponding equation in the three usual space variables. One example, which comes up in school and in the introductory courses at university is the circle. Its representation in different coordinate systems or as a parametrized curve lends itself to interesting problems to solve for the students. Even more interesting and often difficult to answer is the simple question after the curve of the intersection of surfaces in the computer representation if these are parametrized objects. Moreover real time graphics for computer games need fast and reliable algorithms for that question. Specialists in computer graphics experience that not all curves and surfaces can be parametrized. It was a puzzling question until they talked to people working in algebraic geometry. They knew that the genus of the curve tells you about the possible vs. impossible parametrization. For the practical work symbolic algebra packages help. They are based on the concept of the Gröbner basis. Gröbner basis help to translate between representations of surfaces and curves as parametrized objects and graphs of functions. Nevertheless, often very long polynomials with many terms (like 500) are the result and not so straightforward to analyse. A second research topic of Eliana is algebraic statistics. It is a very recent field and evolved only in the last 20-30 years. In the typical problems one studies discrete or polynomial equations using symbolic computations with combinatorics on top. Often numerical algebraic tools are necessary. It is algebraic in the sense that many popular statistical models are parametrized by polynomials. The points in the image of the parameterization are the probability distributions in the statistical model. The interest of the research is to study properties of statistical models using algebraic geometry, for instance describe the implicit equations of the model. (...)

Erschienen: 28.06.2018
Dauer: 51:28

Podcast-Webseite: Episode "Algebraic Geometry"


InfSup-Bedingung

Modellansatz 170

Am 6. Juni 2018 hat Dietmar Gallistl seine Antrittsvorlesung gehalten. Dies ist der traditionelle Abschluss jedes Habilitationsverfahrens an der KIT-Fakultät für Mathematik. Der Titel des Vortrags lautete: Die Stabilitätskonstante des Divergenzoperators und ihre numerische Bestimmung. Im Zentrum des Vortrags und des Gespräches mit Gudrun stand die Inf-sup-Bedingung, die u.a. in der Strömungsrechnung eine zentrale Rolle spielt. Das lineare Strömungsproblem (Stokesproblem) besteht aus einer elliptischen Vektor-Differentialgleichung für das Geschwindigkeitsfeld und den Gradienten des Drucks und einer zweiten Gleichung. Diese entsteht unter der Annahme, dass es zu keiner Volumenänderung im Fluid unter Druck kommt (sogenannte Inkompressibilität) aus der Masseerhaltung. Mathematisch ist es die Bedingung, dass die Divergenz des Geschwindigkeitsfeldes Null ist. Physikalisch ist es eine Nebenbedingung. In der Behandlung des Problems sowohl in der Analysis als auch in der Numerik wird häufig ein Lösungsraum gewählt, in dem diese Bedingung automatisch erfüllt ist. Damit verschwindet der Term mit dem Druck aus der Gleichung. Für das Geschwindigkeitsfeld ist dann mit Hilfe des Lax-Milgram Satzes eine eindeutige Lösung garantiert. Allerdings nicht für den Druck. Genau genommen entsteht nämlich ein Sattelpunktproblem sobald man den Druck nicht ausblendet. Dieses ist nicht wohlgestellt, weil man keine natürlichen Schranken hat. Unter einer zusätzlichen Bedingung ist es aber möglich, hier auch die Existenz des Druckes zu sichern (und zwar sowohl analytisch als auch später im numerischen Verfahren solange der endliche Raum ein Unterraum des analytischen Raumes ist). Diese heißt entweder inf-sup Bedingung oder aber nach den vielen Müttern und Vätern: Ladyzhenska-Babushka-Brezzi-Bedingung. Die Konstante in der Bedingung geht direkt in verschiedene Abschätzungen ein und es wäre deshalb schön, sie genau zu kennen. Ein Hilfsmittel bei der geschickten numerischen Approximation ist die Helmholtzzerlegung des L2. Diese besagt, dass sich jedes Feld eindeutig in zwei Teile zerlegen läßt, von der eines ein Gradient ist und der andere schwach divergenzfrei. Es lassen sich dann beide Teile getrennt betrachten. Man konstruiert den gemischten Finite Elemente Raum so, dass im Druck stückweise polynomielle Funktionen (mit Mittelwert 0) auftreten und und für den Raum der Geschwindigkeitsgradienten das orthogonale kompelemt der schwach divergenzfreien Raviart-Thomas-Elemente gewählt ist. Dietmar Gallistl hat in Freiburg und Berlin Mathematik studiert und promovierte 2014 an der Humboldt-Universität zu Berlin. Nach Karlsruhe kam er als Nachwuchsgruppenleiter im SFB Wellenphänome - nahm aber schon kurz darauf in Heidelberg die Vertretung einer Professur wahr. Zur Zeit ist er als Assistant Professor an der Universität Twente tätig.

Erschienen: 21.06.2018
Dauer: 20:05

Podcast-Webseite: Episode "InfSup-Bedingung"


Maschinenbau HM

Modellansatz 169

Gudrun sprach mit Gabriel Thäter. Er ist der langjährigen Hörerschaft schon bekannt, denn er hat im Februar 2015 als Schüler über sein BOGY-Praktikum am Institut für angewandte und numerische Mathematik berichtet. Heute ist er Maschinenbau-Student am KIT und absolviert gerade sein viertes Semester. Damit hat Gabriel die drei Semester, in denen Mathematik zum Studienplan für Maschinenbauer gehört - die sogenannte Höhere Mathematik (HM) I-III - erfolgreich abgeschlossen. Außerdem arbeitet er schon das zweite Semester als Tutor in der HM-Ausbildung für das Studienjahr, das nach ihm das Studium aufgenommen hat. Gudrun wollte im Gespräch aus erster Hand erfahren, wie die Mathe-Ausbildung bei ihm angekommen ist. Der Ausgang war, mit welchen Wünschen und Erwartungen Gabriel sich für ein Studium im Maschinenbau entschieden hat. Tatsächlich war Maschinenbau nicht sein erster Wunsch, sondern er hatte sich zunächst für ein Duales Studium in Luft- und Raumfahrttechnik beworben. Das Duale Studium vereinigt Praxisphasen in einem Unternehmen mit Studienphasen an einer Fachhochschule und führt zum Abschluss Bachelor. Während der Studienzeit zahlt das Unternehmen ein Gehalt. Diese Studiensituation ist ist so attraktiv, dass der Wettbewerb um die wenigen Studienplätze immer sehr stark ist - auch wenn es nicht die ideale Ausgangssituation für eine Forschungstätigkeit später ist, da die theoretische Ausbildung nicht so breit aufgestellt sein kann wie im Bachelor an einer Universität. Ein Studium des Maschinenbaus kam Gabriels Wunschbild Raumfahrttechnik am nächsten, zumal mit einem Studium in Karlsruhe für ihn auch kein Wohnort-Wechsel nötig wurde. Inzwischen ist Gabriel mit der "zweiten Wahl" sehr zufrieden, denn sein Studium erweist sich für ihn sehr vielseitig und bereitet ihn auf unterschiedliche Spezialisierungsmöglichkeiten vor. Im Moment plant er, sich in der Richtung Thermische Strömungsmaschinen zu vertiefen. Gabriel war darauf gefasst, dass Mathematik an der Uni etwas mehr Zeit und Mühe kosten wird als in der Schule. Es hat ihn aber doch etwas überrascht, wie sehr sich Stoffdichte und Unterrichtstempo von der Schule unterscheiden. Trotzdem hat er seinen Ehrgeiz darin gesetzt, die Übungsaufgaben möglichst richtig und vollständig zum gegegebnen Termin einzureichen. Um für die schriftliche Prüfung am Ende des Semester zugelassen zu werden, muss man in der Summe der Übungsblätter 1-10 eine gewisse Mindestpunktzahl erreichen. Für Gabriel hat sich die Arbeit in einer Gruppe bewährt. Für die Prüfungsvorbereitung hat er auch alte Klausuren aus der Fachschaft herangezogen. Die Aufteilung des Lernens in der Vorlesung, der zentralen Übung und in den Tutorium hat ihm gut gefallen. Jede Veranstaltung hat ihren Platz und ihren eigenen Nutzen für ihn gezeigt. Als Tutor sieht er nun die Lehre auch ein wenig von der anderen Seite. Er unterrichtet selbst pro Woche eine Stunde, in der die Studierenden Fragen zu den aktuellen Aufgaben stellen (...)

Erschienen: 14.06.2018
Dauer: 32:59

Podcast-Webseite: Episode "Maschinenbau HM"


Erdbebensicheres Bauen

Modellansatz 168

Vom 10. - 13. Mai 2018 fand im ZKM und in der Hochschule für Gestaltung (HfG) die GPN18 statt. Dort traf Sebastian auf Arne Rick und sie unterhielten sich über die DIN-Norm 4149 zu Erdbebensicherem Bauen. Die DIN4149 legt fest, nach welchen Auslegungszahlen man planen, und welchen Verfahren man Gebäude bauen darf, um sie "erdbebensicher" gemäß der Norm nennen zu dürfen. Erdbeben sind in Deutschland allgemein nicht sehr häufig, aber es gibt Gebiete in denen ein deutlich höheres Erbebenrisiko besteht, wie beispielsweise in Aachen und dem Erdbebengebiet Kölner Bucht (aktuelle Erdbeben) in der Erdbebenzone 3. Mit der Erdbebenzone 1 für Karlsruhe sind wir auch in einem gefährdeten Bereich (Erdbeben in Karlsruhe), wenn auch nicht im gleichen Maße. Südlich von Tübingen gibt es eine weitere Erbebenzone 3 (aktuelle Erdbeben). In der Auslegung werden Erdbeben als ein Katastrophen-Lastfall angenommen, und die Bemessung richtet sich auf die schwersten Erdbeben, die statistisch alle 475 Jahre auftreten können. Die ehemalige Munitionsfabrik, die nun u.a. das ZKM, die HfG und gerade die GPN18 beinhaltet, steht schon seit über 100 Jahren, und wird auch noch länger stehen, so ist dies eine für Gebäude realistische Zeitskala. In der Auslegung spielt das Gewicht der Gebäude eine große Rolle, denn die zu verarbeitende Kraft bestimmt sich nach Newton aus der Masse und Beschleunigung. In Karlsruhe muss mit einer Spitzenbodenbeschleunigung von bis zu 0.4g bzw. 3.9m/s^2 rechnen. Wie unterschiedlich dabei die Bewegung ausfallen kann, ist an verschiedenen Seismogrammen ersichtlich, die den Verlauf des Bebens mit einem Stift auf einem durchlaufenden Blatt darstellen. Die Modellierung von Erdbeben beginnt mit dem Erdbebenherd, über dem sich auf der Erdoberfläche das Epizentrum befindet. Idealisiert bewegen sich seismische Wellen vom Epizentrum aus als Raumwellen kugelförmig aus, zusätzlich gibt es aber auch Oberflächenwellen wie Rayleigh- oder Love-Wellen, die sich idealisiert kreisförmig um das Epizentrum ausbreiten. Da die horizontale Beschleunigung die stärkste Wirkung auf Gebäude hat, vereinfacht die Norm den Einfluss von Erdbeben auf Horizontalbeschleunigungen und Bodeneinflüsse. Während Erdbeben für Gebäude ein Problem darstellen können, so sind sie für die Seismische Tomographie die Informationsquelle, um Einblicke in die Erde zu erhalten. Mit optimaler Versuchsplanung kann man dafür auch die Aufstellorte optimieren, um ein möglichst optimales Bild zu erhalten, wie wir aus Modell012: Erdbeben und Optimale Versuchsplanung schon wissen. Natürlich müssen alle relevanten Lastfälle berücksichtigt werden, so kann in Karlsruhe die Windlast sich als Flächenlast teilweise stärker als der Lastfall durch Erdbeben auswirken. Das Haus wird dabei oft als Einmassenschwinger gesehen, bei aufwendigeren Geometrien aber auch als Mehrmassenschwinger (...)

Erschienen: 07.06.2018
Dauer: 1:24:27

Podcast-Webseite: Episode "Erdbebensicheres Bauen"


Podcast "Modellansatz"
Merken
QR-Code